Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 50
1.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-22282921

Waning immunity to vaccination represents a major challenge in vaccinology. Whether booster vaccination improves the durability of immune responses is unknown. Here we show, using a cohort of 55 adult vaccinees who received the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine against SARS-CoV-2, that a booster (i.e., 3rd immunization) dose at 6 - 10 months increased the half-life of serum neutralizing antibody (nAb) titers to 76 days from 56 - 66 days estimated after the primary two-dose vaccination series. A second booster dose (i.e., 4th immunization) more than a year after the primary vaccination increased the half-life further to 88 days. However, despite this modestly improved durability in nAb responses against the Wuhan strain, there was a loss in neutralization capacity against Omicron subvariants, especially the recently emerged variants, BA.2.75.2 and BQ.1.1 (35 and 50-fold drop in titers respectively, relative to the ancestral (WA.1) strain. While only 55 - 65% of participants demonstrated a detectable nAb titer against the newer variants after the booster (3rd dose), the response declined to below the detection limit in almost all individuals by 6 months. Notably, even against BA.1 and BA.5, the titers declined rapidly in a third of the vaccinees and were below the detection limit at 6 months. In contrast, booster vaccination induced antigen-specific memory B and T cells that persisted for at least 6 months. Collectively, our data show that the durability of immune responses improves following subsequent booster immunizations; however, the emergence of immune evasive variants reduces the effectiveness of booster doses in preventing infection.

2.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-507852

The pro- and anti-inflammatory pathways that determine the balance of inflammation and viral control during SARS-CoV-2 infection are not well understood. Here we examine the roles of IFN{gamma} and IL-10 in regulating inflammation, immune cell responses and viral replication during SARS-CoV-2 infection of rhesus macaques. IFN{gamma} blockade tended to decrease lung inflammation based on 18FDG-PET/CT imaging but had no major impact on innate lymphocytes, neutralizing antibodies, or antigen-specific T cells. In contrast, IL-10 blockade transiently increased lung inflammation and enhanced accumulation of virus-specific T cells in the lower airways. However, IL-10 blockade also inhibited the differentiation of virus-specific T cells into airway CD69+CD103+ TRM cells. While virus-specific T cells were undetectable in the nasal mucosa of all groups, IL-10 blockade similarly reduced the frequency of total TRM cells in the nasal mucosa. Neither cytokine blockade substantially affected viral load and infection ultimately resolved. Thus, in the macaque model of mild COVID-19, the pro- and anti-inflammatory effects of IFN{gamma} and IL-10 have no major role in control of viral replication. However, IL-10 has a key role in suppressing the accumulation of SARS-CoV-2-specific T cells in the lower airways, while also promoting TRM at respiratory mucosal surfaces.

3.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-22279080

The SARS-CoV-2 Omicron variant has challenged the control of the COVID-19 pandemic even in highly vaccinated countries. While a second booster of mRNA vaccines improved the immunity against SARS-CoV-2, the humoral and cellular responses induced by a second booster of an inactivated SARS-CoV-2 vaccine have not been studied. In the context of a phase 3 clinical study, we report that a second booster of CoronaVac(R) increased the neutralizing response against the ancestral virus yet showed poor neutralization against the Omicron variant. Additionally, isolated PBMCs displayed equivalent activation of specific CD4+ T cells and IFN-{gamma} production when stimulated with a mega-pool of peptides derived from the spike protein of the ancestral virus or the Omicron variant. In conclusion, a second booster dose of CoronaVac(R) does not improve the neutralizing response against the Omicron variant compared with the first booster dose, yet it helps maintaining a robust spike-specific CD4+ T cell response.

4.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-22278464

BackgroundThe development of vaccines to control the COVID-19 pandemic progression is a worldwide priority. CoronaVac(R) is an inactivated SARS-CoV-2 vaccine approved for emergency use with robust efficacy and immunogenicity data reported in trials in China, Brazil, Indonesia, Turkey, and Chile. MethodsThis study is a randomized, multicenter, and controlled phase 3 trial in healthy Chilean adults aged [≥]18 years. Volunteers received two doses of CoronaVac(R) separated by two (0-14 schedule) or four weeks (0-28 schedule). 2,302 volunteers were enrolled, 440 were part of the immunogenicity arm, and blood samples were obtained at different times. Samples from a single center are reported. Humoral immune responses were evaluated by measuring the neutralizing capacities of circulating antibodies. Cellular immune responses were assessed by ELISPOT and flow cytometry. Correlation matrixes were performed to evaluate correlations in the data measured. ResultsBoth schedules exhibited robust neutralizing capacities with the response induced by the 0-28 schedule being better. No differences were found in the concentration of antibodies against the virus and different variants of concern between schedules. Stimulation of PBMCs with MPs induced the secretion of IFN-{gamma} and the expression of activation induced markers for both schedules. Correlation matrixes showed strong correlations between neutralizing antibodies and IFN-{gamma} secretion. ConclusionsImmunization with CoronaVac(R) in Chilean adults promotes robust cellular and humoral immune responses. The 0-28 schedule induced a stronger humoral immune response than the 0-14 schedule. FundingMinistry of Health, Government of Chile, Confederation of Production and Commerce & Millennium Institute on Immunology and Immunotherapy, Chile. Clinical trial numberNCT04651790. summaryTwo immunization schedules were evaluated for the inactivated SARS-CoV-2 vaccine, Coronavac(R), with two doses of the vaccine separated by two or four weeks. We compared humoral and cellular immune responses, showing they are mostly similar, with differences in neutralization capacities.

5.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-22277639

A large proportion of the global population received a single dose of the Ad26.COV2.S coronavirus disease-2019 (COVID-19) vaccine as priming vaccination, which was shown to provide protection against moderate to severe COVID-19. However, the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants that harbor immune-evasive mutations in the spike protein led to the recommendation of booster vaccinations after Ad26.COV2.S priming. Recent studies showed that heterologous booster vaccination with an mRNA-based vaccine following Ad26.COV2.S priming leads to high antibody levels. However, how heterologous booster vaccination affects other functional aspects of the immune response remains unknown. Here, we performed immunological profiling on samples obtained from Ad26.COV2.S-vaccinated individuals before and after a homologous (Ad26.COV2.S) or heterologous (mRNA-1273 or BNT162b2) booster vaccination. Both homologous and heterologous booster vaccination increased antibodies with multiple functionalities towards ancestral SARS-CoV-2, the Delta and Omicron BA.1 variants. Especially, mRNA-based booster vaccination induced high levels of neutralizing antibodies and antibodies with various Fc-mediated effector functions such as antibody-dependent cellular cytotoxicity and phagocytosis. In contrast, T cell responses were similar in magnitude following homologous or heterologous booster vaccination, and retained functionality towards Delta and Omicron BA.1. However, only heterologous booster vaccination with an mRNA-based vaccine led to the expansion of SARS-CoV-2-specific T cell clones, without an increase in the breadth of the T cell repertoire as assessed by T cell receptor sequencing. In conclusion, we show that Ad26.COV2.S priming vaccination provides a solid immunological base for heterologous boosting with an mRNA-based COVID-19 vaccine, increasing humoral and cellular responses targeting newly emerging variants of concern. One sentence summaryAd26.COV2.S priming provides a solid immunological base for extension of cellular and humoral immune responses following an mRNA-based booster.

6.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-22276726

COVID-19 caused by SARS-CoV-2 can develop the disease with different degree of clinical severity including fatality. In addition to antibody responses the antigen specific T cells may play a critical role in defining this protective immune response against this virus. As a part of a longitudinal cohort study in Bangladesh to investigate B and T cell specific immune responses, we sought to evaluate the activation induced cell marker (AIM) and the status of different immune cell subsets during infection. A total of 115 participants were analyzed in this study which included participants with asymptomatic, mild, moderate and severe clinical symptoms. In addition, healthy controls (19 in each group) were analysed. Specimens from participants collected during the pre-pandemic period were also analyzed (n=10). Follow-up visits were conducted on day 7, 14, and 28 for all the cases since the enrollment (day 1). In this study 10 participants among the moderate and severe cases expired during the course of follow up. We observed a decrease in mucosa associated invariant T (MAIT) cell frequency on the initial days (day 1 and day 7) in comparison to later days of the COVID-19 infection. However, natural killer (NK) cells were found to be elevated in symptomatic patients just after the onset of disease compared to both asymptomatic patients and healthy individuals. Moreover, we found AIM+ (both OX40+ CD137+ and OX40+ CD40L+) CD4+ T cells to show significant increase in moderate and severe COVID-19 patients in response to SARS-CoV-2 peptides (specially spike peptide) compared to prepandemic controls, who are unexposed to SARS-CoV-2. Notably, we did not observe any significant difference in the CD8+ AIM markers (CD137+ CD69+), which indicates the exhaustion of CD8+ T cells during COVID-19 infection. These findings suggest that the patients who recovered from moderate and severe COVID-19 were able to mount a strong CD4+ T cell response against shared viral determinants that ultimately induced the T cells to mount further immune responses to SARS-CoV-2.

7.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-487674

NVX-CoV2373 is an adjuvanted recombinant full-length SARS-CoV-2 spike trimer protein vaccine demonstrated to be protective against COVID-19 in efficacy trials. Here we demonstrate that vaccinated subjects made CD4+ T cell responses after one and two doses of NVX-CoV2373, and a subset of individuals made CD8+ T cell responses. Characterization of the vaccine-elicited CD8+T cells demonstrated IFN{gamma} production. Characterization of the vaccine-elicited CD4+ T cells revealed both circulating T follicular helper cells (cTFH) and TH1 cells (IFN{gamma}, TNF, and IL-2) were detectable within 7 days of the primary immunization. Spike-specific CD4+ T cells were correlated with the magnitude of the later SARS-CoV-2 neutralizing antibody titers, indicating that robust generation of CD4+ T cells, capable of supporting humoral immune responses, may be a key characteristic of NVX-CoV2373 which utilizes Matrix-M adjuvant.

8.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-484953

Multiple COVID-19 vaccines, representing diverse vaccine platforms, successfully protect against symptomatic COVID-19 cases and deaths. Head-to-head comparisons of T cell, B cell, and antibody responses to diverse vaccines in humans are likely to be informative for understanding protective immunity against COVID-19, with particular interest in immune memory. Here, SARS-CoV-2-spike--specific immune responses to Moderna mRNA-1273, Pfizer/BioNTech BNT162b2, Janssen Ad26.COV2.S and Novavax NVX-CoV2373 were examined longitudinally for 6 months. 100% of individuals made memory CD4+ T cells, with cTfh and CD4-CTL highly represented after mRNA or NVX-CoV2373 vaccination. mRNA vaccines and Ad26.COV2.S induced comparable CD8+ T cell frequencies, though memory CD8+ T cells were only detectable in 60-67% of subjects at 6 months. Ad26.COV2.S was not the strongest immunogen by any measurement, though the Ad26.COV2.S T cell, B cell, and antibody responses were relatively stable over 6 months. A differentiating feature of Ad26.COV2.S immunization was a high frequency of CXCR3+ memory B cells. mRNA vaccinees had substantial declines in neutralizing antibodies, while memory T cells and B cells were comparatively stable over 6 months. These results of these detailed immunological evaluations may also be relevant for vaccine design insights against other pathogens.

9.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-484950

Despite the remarkable efficacy of COVID-19 vaccines, waning immunity, and the emergence of SARS-CoV-2 variants such as Omicron represents a major global health challenge. Here we present data from a study in non-human primates demonstrating durable protection against the Omicron BA.1 variant induced by a subunit SARS-CoV-2 vaccine, consisting of RBD (receptor binding domain) on the I53-50 nanoparticle, adjuvanted with AS03, currently in Phase 3 clinical trial (NCT05007951). Vaccination induced robust neutralizing antibody (nAb) titers that were maintained at high levels for at least one year after two doses (Pseudovirus nAb GMT: 2207, Live-virus nAb GMT: 1964) against the ancestral strain, but not against Omicron. However, a booster dose at 6-12 months with RBD-Wu or RBD-{beta} (RBD from the Beta variant) displayed on I53-50 elicited equivalent and remarkably high neutralizing titers against the ancestral as well as the Omicron variant. Furthermore, there were substantial and persistent memory T and B cell responses reactive to Beta and Omicron variants. Importantly, vaccination resulted in protection against Omicron infection in the lung (no detectable virus in any animal) and profound suppression of viral burden in the nares (median peak viral load of 7567 as opposed to 1.3x107 copies in unvaccinated animals) at 6 weeks post final booster. Even at 6 months post vaccination, there was significant protection in the lung (with 7 out of 11 animals showing no viral load, 3 out of 11 animals showing ~20-fold lower viral load than unvaccinated controls) and rapid control of virus in the nares. These results highlight the durable cross-protective immunity elicited by the AS03-adjuvanted RBD-I53-50 nanoparticle vaccine platform.

10.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-484542

The SARS-CoV-2 Omicron variant of concern comprises three sublineages designated BA.1, BA.2, and BA.3, with BA.2 steadily replacing the globally dominant BA.1. We show that the large number of BA.1 and BA.2 spike mutations severely dampen plasma neutralizing activity elicited by infection or seven clinical vaccines, with cross-neutralization of BA.2 being consistently more potent than that of BA.1, independent of the vaccine platform and number of doses. Although mRNA vaccines induced the greatest magnitude of Omicron BA.1 and BA.2 plasma neutralizing activity, administration of a booster based on the Wuhan-Hu-1 spike sequence markedly increased neutralizing antibody titers and breadth against BA.1 and BA.2 across all vaccines evaluated. Our data suggest that although BA.1 and BA.2 evade polyclonal neutralizing antibody responses, current vaccine boosting regimens may provide sufficient protection against Omicron-induced disease.

11.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-482548

Understanding immune memory to Common Cold Coronaviruses (CCCs) is relevant for assessing its potential impact on the outcomes of SARS-CoV-2 infection, and for the prospects of pan-corona vaccines development. We performed a longitudinal analysis, of pre-pandemic samples collected from 2016-2019. CD4+ T cells and antibody responses specific for CCC and to other respiratory viruses, and chronic or ubiquitous pathogens were assessed. CCC-specific memory CD4+ T cells were detected in most subjects, and their frequencies were comparable to those for other common antigens. Notably, responses to CCC and other antigens such as influenza and Tetanus Toxoid (TT) were sustained over time. CCC-specific CD4+ T cell responses were also associated with low numbers of HLA-DR+CD38+ cells and their magnitude did not correlate with yearly changes in the prevalence of CCC infections. Similarly, spike RBD-specific IgG responses for CCC were stable throughout the sampling period. Finally, high CD4+ T cell reactivity to CCC, but not antibody responses, was associated with high pre-existing SARS-CoV-2 immunity. Overall, these results suggest that the steady and sustained CCC responses observed in the study cohort are likely due to a relatively stable pool of CCC-specific memory CD4+ T cells instead of fast decaying responses and frequent reinfections.

12.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-22272513

BackgroundThe Sinovac SARS-CoV-2 inactivated vaccine (CoronaVac) has been demonstrated to be safe, well tolerated, and efficacious in preventing mild and severe Covid-19. Although different studies have demonstrated its short-term immunogenicity, long-term cellular and humoral response evaluations are still lacking. MethodsCellular and humoral responses were assessed after enrollment of volunteers in the PROFISCOV phase 3 double-blind, randomized, placebo-controlled clinical trial to evaluate CoronaVac. Assays were performed using flow cytometry to evaluate cellular immune response and an antigen binding electrochemiluminescence assay to detect antigen-specific antibodies to the virus. ResultsFifty-three volunteers were selected for long term assessment of their SARS-CoV-2-specific immune responses. CD4+ T cell responses (including circulating follicular helper (cTfh, CD45RA- CXCR5+) expressing CD40L, as well as non-cTfh cells expressing CXCR3) were observed early upon the first vaccine dose, increased after the second dose, remaining stable for 6-months. Memory CD4+ T cells were detected in almost all vaccinees, the majority being central memory T cells. IgG levels against Wuhan/WH04/2020 N, S and receptor binding domain (RBD) antigens and the variants of concern (VOCs, including B.1.1.7/Alpha, B.1.351/Beta and P.1/Gamma) S and RBD antigens peaked 14 days after the second vaccine shot, and were mostly stable for a 1-year period. ConclusionsCoronaVac two-doses regimen is able to induce a potent and durable SARS-CoV-2 specific cellular response. The cellular reaction is part of a coordinated immune response that includes high levels of specific IgG levels against parental and SARS-CoV-2 VOC strains, still detected after one year. FundingFundacao Butantan, Instituto Butantan and Sao Paulo Research Foundation (FAPESP) (grants 2020/10127-1 and 2020/06409-1). This work has also been supported by NIH contract 75N93019C00065 (A.S, D.W). PATH facilitated reagent donations for this work with support by the Bill & Melinda Gates Foundation (INV-021239). Under the grant conditions of the foundation, a Creative Commons Attribution 4.0 generic License has already been assigned to the Author Accepted Manuscript version that might arise from this submission.

13.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-22270973

BackgroundMultiple vaccines against SARS-CoV-2 have been evaluated in clinical trials, but very few include the pediatric population. The inactivated vaccine CoronaVac(R) has shown to be safe and immunogenic in a phase 1/2 clinical trial in a pediatric cohort in China. This study is an interim safety and immunogenicity report of a phase 3 clinical trial for CoronaVac(R) in healthy children and adolescents in Chile. MethodsParticipants aged 3 to 17 years old received two doses of CoronaVac(R) in a four-week interval. Local and systemic adverse reactions were registered in 699 participants that received the first dose and 381 that received the second dose until December 31st, 2021. Whole blood samples were collected from 148 participants for humoral and cellular immunity analyses. ResultsThe primary adverse reaction reported after the first and second dose was pain at the injection site. The adverse reactions observed were primarily mild and local, and no severe adverse events were reported. Four weeks after the second dose, a significant increase in the levels of total and neutralizing antibodies was observed. Increased activation of specific CD4+ T cells was also observed four weeks after the second dose. Although antibodies induced by vaccination neutralize variants Delta and Omicron, titers were lower than the D614G variant. Importantly, comparable T cell responses were detected against these variants of concern. ConclusionsCoronaVac(R) is safe and immunogenic in subjects aged 3-17 years old and is thus likely to confer protection against infection caused by SARS-CoV-2 variants in this target population.

14.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-22270471

BackgroundLimited data are available on the long-term clinical and immunologic consequences of SARS-CoV-2 infection in people with HIV (PWH). MethodsWe measured SARS-CoV-2 specific humoral and cellular responses in people with and without HIV recovering from COVID-19 (n=39 and n=43, respectively) using binding antibody, surrogate virus neutralization, intracellular cytokine staining, and inflammatory marker assays. We identified individuals experiencing post-acute sequelae of SARS-CoV-2 infection (PASC) and evaluated immunologic parameters. We used linear regression and generalized linear models to examine differences by HIV status in the magnitude of inflammatory and virus-specific antibody and T cell responses, as well as differences in the prevalence of PASC. ResultsAmong PWH, we found broadly similar SARS-CoV-2-specific antibody and T cell responses as compared with a well-matched group of HIV-negative individuals. PWH had 70% lower relative levels of SARS-CoV-2 specific memory CD8+ T cells (p=0.007) and 53% higher relative levels of PD-1+ SARS-CoV-2 specific CD4+ T cells (p=0.007). Higher CD4/CD8 ratio was associated with lower PD-1 expression on SARS-CoV-2 specific CD8+ T cells (0.34-fold effect, p=0.02). HIV status was strongly associated with PASC (odds ratio 4.01, p=0.008), and levels of certain inflammatory markers (IL-6, TNF-alpha, and IP-10) were associated with persistent symptoms. ConclusionsWe identified potentially important differences in SARS-CoV-2 specific CD4+ and CD8+ T cells in PWH and HIV-negative participants that might have implications for long-term immunity conferred by natural infection. HIV status strongly predicted the presence of PASC. Larger and more detailed studies of PASC in PWH are urgently needed.

15.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-475282

SARS-CoV-2 primarily replicates in mucosal sites, and more information is needed about immune responses in infected tissues. We used rhesus macaques to model protective primary immune responses in tissues during mild COVID-19. Viral RNA levels were highest on days 1-2 post-infection and fell precipitously thereafter. 18F-fluorodeoxyglucose (FDG)-avid lung abnormalities and interferon (IFN)-activated myeloid cells in the bronchoalveolar lavage (BAL) were found on days [~]3-4. Virus-specific effector CD8 and CD4 T cells were detectable in the BAL and lung tissue on days [~]7-10, after viral RNA, lung inflammation, and IFN-activated myeloid cells had declined. Notably, SARS-CoV-2-specific T cells were not detectable in the nasal turbinates, salivary glands, and tonsils on day 10 post-infection. Thus, SARS-CoV-2 replication wanes in the lungs prior to T cell responses, and in the nasal and oral mucosa despite the apparent lack of Ag-specific T cells, suggesting that innate immunity efficiently restricts viral replication during mild COVID-19. ONE SENTENCE SUMMARYSARS-CoV-2 infection leads to mild, focal lung inflammation, and type I IFN activated myeloid cells that mostly resolve prior to the influx of virus-specific effector T cells or antibody responses in rhesus macaques.

16.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-22269976

SARS-CoV-2 is still a major burden for global health despite effective vaccines. With the reduction of social distancing measures, infection rates are increasing in children, while data on the pediatric immune response to SARS-CoV-2 infection is still lacking. Although the typical disease course in children has been mild, emerging variants may present new challenges in this age group. Peripheral blood mononuclear cells (PBMC) from 51 convalescent children, 24 seronegative siblings from early 2020, and 51 unexposed controls were stimulated with SARS-CoV-2-derived peptide MegaPools from the ancestral and beta variants. Flow cytometric determination of activation-induced markers and secreted cytokines were used to quantify the CD4+ T cell response. The average time after infection was over 80 days. CD4+ T cell responses were detected in 61% of convalescent children and were markedly reduced in preschool children. Cross-reactive T cells for the SARS-CoV-2 beta variant were identified in 45% of cases after infection with an ancestral SARS-CoV-2 variant. The CD4+ T cell response was accompanied most predominantly by IFN-{gamma} and Granzyme B secretion. An antiviral CD4+ T cell response was present in children after ancestral SARS-CoV-2 infection, which was reduced in the youngest age group. We detected significant cross-reactivity of CD4+ T cell responses to the more recently evolved immune-escaping beta variant. Our findings have epidemiologic relevance for children regarding novel viral variants of concern and vaccination efforts.

17.
Preprint En | PREPRINT-MEDRXIV | ID: ppmedrxiv-22269491

We generated CD4+ T cell lines (TCLs) reactive to either SARSCoV-2 spike (S) or membrane (M) proteins from unexposed naive T cells from six healthy donor volunteers to understand in fine detail whether the S and M structural proteins have intrinsic differences in driving antigen-specific CD4+ T cell responses. Having shown that each of the TCLs were antigen-specific and antigen-reactive, single cell mRNA analyses demonstrated that SARS-CoV-2 S and M proteins drive strikingly distinct molecular signatures. Whereas the S-specific responses are virtually indistinguishable from those responses induced by other viral antigens (e.g. CMV), the M protein-specific CD4+ TCLs have a transcriptomic signature that indicate a marked suppression of interferon signaling, characterized by a downregulation of the genes encoding ISG15, IFITM1, IFI6, MX1, STAT1, OAS1, IFI35, IFIT3 and IRF7 (a molecular signature which is not dissimilar to that found in severe COVID-19). Our study suggests a potential link between the antigen specificity of the SARS-CoV-2-reactive CD4+ T cells and the development of specific sets of adaptive immune responses. Moreover, the balance between T cells of significantly different specificities may be the key to understand how CD4+ T cell dysregulation can determine the clinical outcomes of COVID-19.

18.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-474333

We address whether T cell responses induced by different vaccine platforms (mRNA-1273, BNT162b2, Ad26.COV2.S, NVX-CoV2373) cross-recognize SARS-CoV-2 variants. Preservation of at least 83% and 85% for CD4+ and CD8+ T cell responses was found, respectively, regardless of vaccine platform or variants analyzed. By contrast, highly significant decreases were observed for memory B cell and neutralizing antibody recognition of variants. Bioinformatic analyses showed full conservation of 91% and 94% of class II and class I spike epitopes. For Omicron, 72% of class II and 86% of class I epitopes were fully conserved, and 84% and 85% of CD4+ and CD8+ T cell responses were preserved. In-depth epitope repertoire analysis showed a median of 11 and 10 spike epitopes recognized by CD4+ and CD8+ T cells from vaccinees. Functional preservation of the majority of the T cell responses may play an important role as a second-level defense against diverse variants.

19.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-474325

SARS-CoV-2 specific T-cell response has been associated with disease severity, immune memory and heterologous response to endemic coronaviruses. However, an integrative approach combining a comprehensive analysis of the quality of SARS-CoV-2 specific T-cell response with antibody levels in these three scenarios is needed. In the present study we found that, in acute infection, while mild disease was associated with high T-cell polyfunctionality biased to IL-2 production and inversely correlated with anti-S IgG levels, combinations only including IFN-{gamma} with absence of perforin production predominated in severe disease. Seven months after infection, both non-hospitalized and previously hospitalized patients presented robust anti-S IgG levels and SARS-CoV-2 specific T-cell response. In addition, only previously hospitalized patients showed a T-cell exhaustion profile. Finally, combinations including IL-2 in response to S protein of endemic coronaviruses, were the ones associated with SARS-CoV-2 S-specific T-cell response in pre-COVID-19 healthy donors samples. These results have implications for protective immunity against SARS-CoV-2 and recurrent COVID-19 and may help for the design of new prototypes and boosting vaccine strategies.

20.
Preprint En | PREPRINT-BIORXIV | ID: ppbiorxiv-472874

SARS-CoV-2 infection and COVID-19 vaccines elicit memory T cell responses. Here, we report the development of two new pools of Experimentally-defined T cell epitopes derived from the non-spike Remainder of the SARS-CoV-2 proteome (CD4RE and CD8RE). The combination of T cell responses to these new pools and Spike (S) were used to discriminate four groups of subjects with different SARS-CoV-2 infection and COVID-19 vaccine status: non-infected, non-vaccinated (I-V-); infected and non-vaccinated (I+V-); infected and then vaccinated (I+V+); and non-infected and vaccinated (I-V+). The overall classification accuracy based on 30 subjects/group was 89.2% in the original cohort and 88.5% in a validation cohort of 96 subjects. The T cell classification scheme was applicable to different mRNA vaccines, and different lengths of time post-infection/post-vaccination. T cell responses from breakthrough infections (infected vaccinees, V+I+) were also effectively segregated from the responses of vaccinated subjects using the same classification tool system. When all five groups where combined, for a total of 239 different subjects, the classification scheme performance was 86.6%. We anticipate that a T cell-based immunodiagnostic scheme able to classify subjects based on their vaccination and natural infection history will be an important tool for longitudinal monitoring of vaccination and aid in establishing SARS-CoV-2 correlates of protection.

...